资源类型

期刊论文 629

会议视频 21

年份

2023 30

2022 45

2021 40

2020 41

2019 41

2018 37

2017 30

2016 18

2015 23

2014 16

2013 24

2012 43

2011 24

2010 56

2009 55

2008 28

2007 27

2006 13

2005 7

2004 5

展开 ︾

关键词

悬索桥 15

泰州大桥 9

苏通大桥 9

斜拉桥 8

桥梁 8

桥梁工程 7

三塔悬索桥 4

南京长江第四大桥 4

钢箱梁 4

几何控制 3

桥梁隧道 3

2022全球十大工程成就 2

BNLAS 2

DX桩 2

一阶分析法 2

三塔两跨悬索桥 2

主缆 2

京津城际铁路 2

信息化 2

展开 ︾

检索范围:

排序: 展示方式:

Numerical analysis of vehicle-bridge coupling vibration concerning nonlinear stress-dependent damping

Pengfei LI; Jinquan ZHANG; Shengqi MEI; Zhenhua DONG; Yan MAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 239-249 doi: 10.1007/s11709-021-0804-y

摘要: Damping is known to have a considerable influence on the dynamic behavior of bridges. The fixed damping ratios recommended in design codes do not necessarily represent the complicated damping characteristics of bridge structures. This study investigated the application of stress-dependent damping associated with vehicle-bridge coupling vibration and based on that investigation proposed the stress-dependent damping ratio. The results of the investigation show that the stress-dependent damping ratio is significantly different from the constant damping ratio (5%) defined in the standard specification. When vehicles travel at speeds of 30, 60, and 90, the damping ratios of the bridge model are 3.656%, 3.658%, and 3.671%, respectively. The peak accelerations using the regular damping ratio are 18.9%, 21.3%, and 14.5% of the stress-dependent damping ratio, respectively. When the vehicle load on the bridge is doubled, the peak acceleration of the mid-span node increases by 5.4 times, and the stress-related damping ratio increases by 2.1%. A corrugated steel-web bridge is being used as a case study, and the vibration response of the bridge is compared with the measured results. The acceleration response of the bridge which was calculated using the stress-dependent damping ratio is significantly closer to the measured acceleration response than that using the regular damping ratio.

关键词: vehicle-bridge vibration system     dynamic analysis     stress-dependent damping     energy dissipation    

Vehicle-bridge coupled vibrations in different types of cable stayed bridges

Lingbo WANG,Peiwen JIANG,Zhentao HUI,Yinping MA,Kai LIU,Xin KANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 81-92 doi: 10.1007/s11709-015-0306-x

摘要: Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The bridge model and vehicle model were independently built which have no internal relationship in the ANSYS. The vehicle-bridge coupled vibration relationship was obtained by using the APDL program which subsequently imposed on the vehicle and bridge models during the numerical analysis. The proposed model was validated through a field measurements and literature data. The judging method, possibility, and criterion of the vehicle-bridge resonance (coupled vibrations) of cable stayed bridges (both the floating system and half floating system) under traffic flows were presented. The results indicated that the interval time between vehicles is the main influence factor on the resonance excitation frequency under the condition of equally spaced traffic flows. Compared to other types of cable stayed bridges, the floating bridge system has relatively high possibility to cause vehicle-bridge resonance.

关键词: vehicle-bridge coupled vibration     cable stayed bridge     resonances of vehicle-bridge system    

Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induced

Jianling HOU, Weibing XU, Yanjiang CHEN, Kaida ZHANG, Hang SUN, Yan LI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 867-887 doi: 10.1007/s11709-020-0649-9

摘要: A long-span concrete-filled steel tubular (CFST) arch bridge suffers severe vehicle-induced dynamic responses during its service life. However, few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response. Thus, a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge. The results show that a support void results in a height difference between both sides of the expansion joint, thus increasing the effect of vehicle impact on the main girder and suspenders. The impact factor of the displacement response of the main girder exceeds the design value. The variation of the suspender force is significant, and the diseases are found to have a greater effect on a shorter suspender. The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement. The support void can also cause significant changes in the vehicle-induced acceleration response, particularly when the supports and steel box girder continue to collide with each other under the vehicle load.

关键词: long-span arch bridge     expansion joint disease     vehicle-bridge coupling vibration     dynamic response    

Sectional model test study on vortex-excited resonance of vehicle-bridge system of Shanghai Bridge over

Li ZHOU, Yaojun GE

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 67-72 doi: 10.1007/s11709-009-0007-4

摘要: It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems, because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder sections. Based on the Shanghai Bridge over the Yangtse River, the vortex-excited resonance of a 1∶60 scale sectional model was tested in a TJ-1wind tunnel, with or without vehicles at the attack angle of 0°, +3 and -3°, respectively. The conversion relationships between the resonant amplitudes of the sectional model and that of the prototype bridge were also established by mode shape correction. The result indicates that: 1) for the bridge with vehicles, the vertical vortex-excited resonance is accompanied by torsion vibration with the same frequency, and vice versa, 2) the amplitude of vortex-excited resonance of the bridge with vehicles is much larger than that of the bridge without vehicles, and 3) the lock-in wind speed of the vortex-excited resonance becomes smaller due to the disturbance of vehicles. It is obvious that vehicles bring about changes in the aerodynamic shape of the main girder. Therefore, the influence of vehicles on vortex-excited resonance performance of vehicle-bridge systems, in terms of both amplitude and mode, should not be ignored.

关键词: vehicle-bridge system     sectional mode     vortex-excited resonance     wind tunnel test     mode shape correction    

Erratum to: Bending and vibration of a discontinuous beam with a curvic coupling under different axial

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0709-z

An overview of vortex-induced vibration (VIV) of bridge decks

Teng WU, Ahsan KAREEM

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 335-347 doi: 10.1007/s11709-012-0179-1

摘要: A brief overview of vortex-induced vibration (VIV) of circular cylinders is first given as most of VIV studies have been focused on this particular bluff cross-section. A critical literature review of VIV of bridge decks that highlights physical mechanisms central to VIV from a renewed perspective is provided. The discussion focuses on VIV of bridge decks from wind-tunnel experiments, full-scale observations, semi-empirical models and computational fluids dynamics (CFD) perspectives. Finally, a recently developed reduced order model (ROM) based on truncated Volterra series is introduced to model VIV of long-span bridges. This model captures successfully salient features of VIV at “lock-in” and unlike most phenomenological models offers physical significance of the model kernels.

关键词: vortex-induced vibration (VIV)     Volterra series     bridge    

Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces

Heng LIU, Jie HONG, Dayi ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 417-429 doi: 10.1007/s11465-019-0584-4

摘要: The transverse stiffness and vibration characteristics of discontinuous beams can significantly differ from those of continuous beams given that an abrupt change in stiffness may occur at the interface of the former. In this study, the equations for the deflection curve and vibration frequencies of a simply supported discontinuous beam under axial loads are derived analytically on the basis of boundary, continuity, and deformation compatibility conditions by using equivalent spring models. The equation for the deflection curve is solved using undetermined coefficient methods. The normal function of the transverse vibration equation is obtained by separating variables. The differential equations for the beam that consider moments of inertia, shearing effects, and gyroscopic moments are investigated using the transfer matrix method. The deflection and vibration frequencies of the discontinuous beam are studied under different axial loads and connection spring stiffness. Results show that deflection decreases and vibration frequencies increase exponentially with increasing connection spring stiffness. Moreover, both variables remain steady when connection spring stiffness reaches a considerable value. Lastly, an experimental study is conducted to investigate the vibration characteristics of a discontinuous beam with a curvic coupling, and the results exhibit a good match with the proposed model.

关键词: discontinuous beam     bending stiffness     transverse vibration     axial loads     gyroscopic moments    

Vibration analysis of medium and small span bridges subjected to mixed marshalling freight trains

LI Qi, WU Dingjun, HUANG Xiaobin

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 133-138 doi: 10.1007/s11709-008-0019-5

摘要: It has been reported several times that train derailment occurs when mixed marshalling freight trains traverse bridges at high speeds in China. This study aims to explain this phenomenon numerically based on the train-bridge coupling vibration theory and its associated computer program. The train-bridge vibration characteristic is analyzed by a computer program when mixed marshalling freight trains traverse 32-meter-span prestressed concrete simple beam bridges. The mechanism that dynamic responses of the bridges are prominent and that empty trains are inclined to derail are derived from the dynamic responses analysis. The analysis indicates that the significant differences of axle loads between heavy vehicles and empty vehicles produce periodic forced loadings of large amplitudes. These periodic loadings cause severe vibration of bridges. In turn, severe vibration of the bridges produces intensive counteraction to empty vehicles.

关键词: train-bridge vibration     vibration characteristic     associated computer     train-bridge     phenomenon    

Kinetic energy based model assessment and sensitivity analysis of vortex induced vibration of segmentalbridge decks

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 480-501 doi: 10.1007/s11709-017-0435-5

摘要: In this paper, semi 3D models for segmental Bridge decks are created in ABAQUS CFD program with the support of MATLAB codes to simulate and analyze vortex shedding generated due to wind excitation through considering the stationary position of the deck. Three parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system in addition to the shapes and patterns of the vortices. Two benchmarks from the literature Von Karman and Dyrbye and Hansen are considered to validate the vortex shedding aspects for the CFD models. Good agreement between the results of the benchmarks and the semi 3D models has been detected. Latin hypercube experimental method is dedicated to generate the surrogate models for the kinetic energy of the system and the lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for all the three parameters. The kinetic energy approach performed very well in revealing the rational effects and the roles of each parameter in the generation of vortex shedding and predicting vortex induced vibration of the deck.

关键词: vortex induced vibration     reynolds number     kinetic energy     vorticity     latin hypercube sampling    

Vibration analysis of blade-disc coupled structure of compressor

WANG Chunjie, SONG Shunguang, ZONG Xiao

《能源前沿(英文)》 2008年 第2卷 第3期   页码 302-305 doi: 10.1007/s11708-008-0064-8

摘要: While a 3D assembly model of blade-disc structure was established, a finite element model for calculating the vibration characteristics during blade-disc coupling was built by taking into consideration the coupling action of contact stress between the blade and the disc. The vibration characteristics of the blade-disc coupling structure was calculated and analyzed using cycle analysis method with the aid of ANSYS software. The modeling experiment shows that this method is feasible for analyzing the rabbet assembly structure.

关键词: blade-disc coupling     assembly     experiment     vibration     blade-disc structure    

A preliminary research on wireless cantilever beam vibration sensor in bridge health monitoring

Xinlong TONG, Shanglin SONG, Linbing WANG, Hailu YANG

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 207-214 doi: 10.1007/s11709-017-0406-x

摘要: According to specific bridge environment, optimal design piezoelectric cantilever beam structure by using results of theoretical calculations and simulation, verify natural frequencies of piezoelectric cantilever beam and production ability of data by experiment, thus formed a complete set of design method of piezoelectric cantilever beam. Considering natural frequency of vibration and intensity of the beam body, design a new type of piezoelectric cantilever beam structure. Paper analyzes the principle of sensor data acquisition and transmission, design a hardware integration system include signal conversion module, microcontroller module and wireless transmission module, test local read and wireless transmission for the combination structure of cantilever beam and data collection card, experimental verification of the radio piezoelectric vibrating cantilever vibration response is intact, the beam produced signal by vibration, acquisition card converts and wireless transmit data, this proved a good and intuitive linear response in simulation of bridge vibration test. Finally, the paper designed a kind of new wireless sensor of vibration cantilever beam, suitable for small bridge health monitoring based on Internet of things.

关键词: piezoelectric cantilever beam     bridge     natural frequency     wireless sensor    

Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

Zhengqing CHEN

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 173-179 doi: 10.1007/s11709-009-0034-1

摘要: Flutter derivatives are essential for flutter analysis of long-span bridges, and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel. Making use of the forced vibration testing data of three sectional models, namely, a thin-plate model, a nearly streamlined model, and a bluff-body model, a comparative study was made to identify the flutter derivatives of each model by using a time-domain method and a frequency-domain method. It was shown that all the flutter derivatives of the thin-plate model identified with the frequency-domain method and time-domain method, respectively, agree very well. Moreover, some of the flutter derivatives of each of the other two models identified with the two methods deviate to some extent. More precisely, the frequency-domain method usually results in smooth curves of the flutter derivatives. The formulation of time-domain method makes the identification results of flutter derivatives relatively sensitive to the signal phase lag between vibration state vector and aerodynamic forces and also prone to be disturbed by noise and nonlinearity.

关键词: long-span bridges     wind-induced vibration     flutter derivatives     forced vibration test     time-domain method     frequency-domain method    

Vibration testing of a steel girder bridge using cabled and wireless sensors

Dapeng ZHU, Yang WANG, James BROWNJOHN

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 249-258 doi: 10.1007/s11709-011-0113-y

摘要: Being able to significantly reduce system installation time and cost, wireless sensing technology has attracted much interest in the structural health monitoring (SHM) community. This paper reports the field application of a wireless sensing system on a 4-span highway bridge located in Wayne, New Jersey in the US. Bridge vibration due to traffic and ambient excitation is measured. To enhance the signal-to-noise ratio, a low-noise high-gain signal conditioning module is developed for the wireless sensing system. Nineteen wireless and nineteen cabled accelerometers are first installed along the sidewalk of two neighboring bridge spans. The performance of the wireless sensing system is compared with the high-precision cabled sensing system. In the next series of testing, 16 wireless accelerometers are installed under the deck of another bridge span, forming a 4 × 4 array. Operating deflection analysis is successfully conducted using the wireless measurement of traffic and ambient vibrations.

关键词: wireless sensing     structural health monitoring (SHM)     signal conditioning     operating deflection analysis     ambient vibration    

Vibration control efficiency of piezoelectric shunt damping system

Dan WU, Zhichun YANG, Hao SUN,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 441-446 doi: 10.1007/s11465-009-0055-4

摘要: The piezoelectric shunt damping technique based on the direct piezoelectric effect has been known as a simple, low-lost, lightweight, and easy to implement method for passive damping control of structural vibration. In this technique, a piezoelectric material is used to transform mechanical energy to electrical energy. When applying the piezoelectric shunt damping technique to passively control structural vibration, the piezoelectric materials must be bonded on or embedded in host structure where large strain is induced during vibration, thus to ensure vibrational mechanical energy to be transformed into electrical energy as much as possible. In this paper, the concept of vibration control efficiency of a piezoelectric shunt damping system is proposed and studied theoretically and experimentally. In the study, PZT patches are used as energy converter, and the vibration control efficiency is expressed by the vibration reduction rate per area of the PZT patches. Emphasis is laid on the effect of the generalized electromechanical coupling coefficient on the vibration control efficiency. Four PZT patches with different sizes are bonded on the geometrical central area of four similar clamped aluminum plates, respectively, and vibration control experiments are conducted for these plates using the R-L shunt circuit. The results indicate that the bigger the coupling coefficient , the larger the rate of vibration reduction, and hence, the higher the vibration control efficiency. It also shows that the vibration responses of the first mode of the plates bonded with different PZT patches can be reduced by about 30.5%,48.58%,85.47%, and 89.91%, respectively. It comes to a conclusion that the vibration control efficiency of the piezoelectric shunt damping system decreases with the increase of the area of the PZT patch, whereas the vibration reduction of the plate increases with the area of the PZT patch. Therefore, it is necessary to make topology optimization for the PZT patch in the vibration control utilizing the piezoelectric shunt damping technique.

关键词: piezoelectric shunt     vibration control efficiency     clamped plate     generalized electromechanical coupling coefficient    

在推力和阻力作用下飞行器横向振动分析

宋健

《中国工程科学》 2000年 第2卷 第10期   页码 63-72

摘要:

文章重点讨论了推力和空气阻力对火箭横向振动频率和振型的影响,分析了在推力和阻力作用下频率降低的原因,给出了推力对振型频率影响的估计式。发动机喷管与火箭固联时的横向运动方程式及其相应的边界条件是分析工作的基础。文中得到的主要结论适用于主动加速段、被动减速段和推力与阻力平衡时的巡航段。在小推力和小轴向过载的情况下,各种不同的计算方法所得的结果相差不大。在大推力和高过载情况下,不同的近似解与精确解的差别可能是很大的。

关键词: 飞行器     火箭     横向振动     推力与阻力     振型与频率    

标题 作者 时间 类型 操作

Numerical analysis of vehicle-bridge coupling vibration concerning nonlinear stress-dependent damping

Pengfei LI; Jinquan ZHANG; Shengqi MEI; Zhenhua DONG; Yan MAO

期刊论文

Vehicle-bridge coupled vibrations in different types of cable stayed bridges

Lingbo WANG,Peiwen JIANG,Zhentao HUI,Yinping MA,Kai LIU,Xin KANG

期刊论文

Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induced

Jianling HOU, Weibing XU, Yanjiang CHEN, Kaida ZHANG, Hang SUN, Yan LI

期刊论文

Sectional model test study on vortex-excited resonance of vehicle-bridge system of Shanghai Bridge over

Li ZHOU, Yaojun GE

期刊论文

Erratum to: Bending and vibration of a discontinuous beam with a curvic coupling under different axial

期刊论文

An overview of vortex-induced vibration (VIV) of bridge decks

Teng WU, Ahsan KAREEM

期刊论文

Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces

Heng LIU, Jie HONG, Dayi ZHANG

期刊论文

Vibration analysis of medium and small span bridges subjected to mixed marshalling freight trains

LI Qi, WU Dingjun, HUANG Xiaobin

期刊论文

Kinetic energy based model assessment and sensitivity analysis of vortex induced vibration of segmentalbridge decks

Nazim Abdul NARIMAN

期刊论文

Vibration analysis of blade-disc coupled structure of compressor

WANG Chunjie, SONG Shunguang, ZONG Xiao

期刊论文

A preliminary research on wireless cantilever beam vibration sensor in bridge health monitoring

Xinlong TONG, Shanglin SONG, Linbing WANG, Hailu YANG

期刊论文

Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

Zhengqing CHEN

期刊论文

Vibration testing of a steel girder bridge using cabled and wireless sensors

Dapeng ZHU, Yang WANG, James BROWNJOHN

期刊论文

Vibration control efficiency of piezoelectric shunt damping system

Dan WU, Zhichun YANG, Hao SUN,

期刊论文

在推力和阻力作用下飞行器横向振动分析

宋健

期刊论文